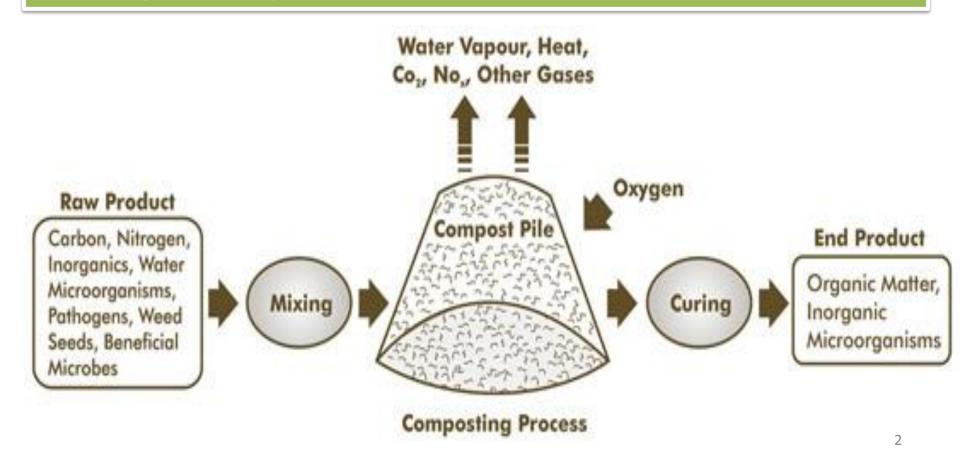
PPP Project

Composting of Organic Wastes & Production of Organic Fertilizers

تصنيع السماد العضوي من المخلفات الحيوانية والنباتية


Case Study Jordan and Palestine

Presented by

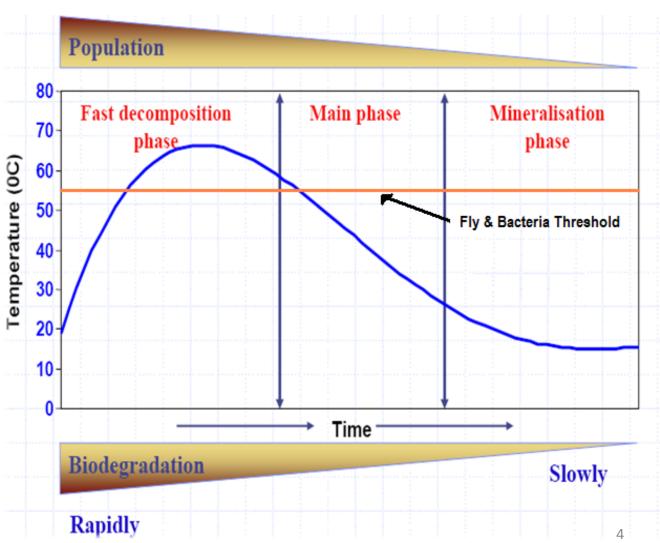
Dr.Eng. Mustafa Al Jaar

Aerobic Composting Process

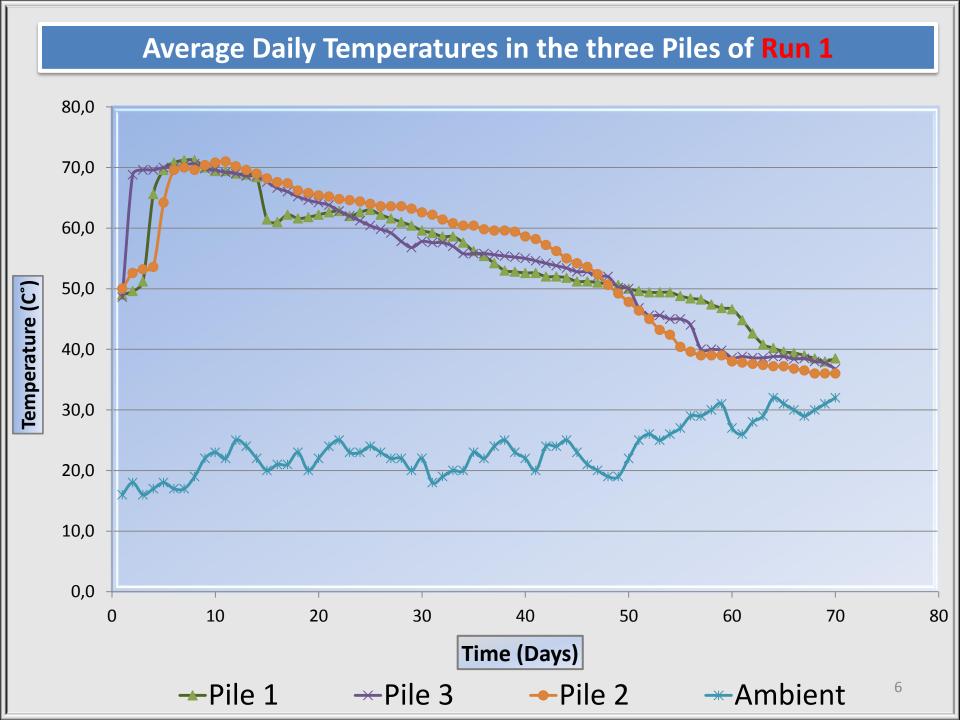
Composting is a low-cost natural way of recycling organic materials, and defined as a controlled process of organic matter decomposition and stabilization that results in production of CO₂,H₂O,heat and relatively stable organic end–product.

Optimum Condition for rapid, aerobic Composting

Condition	Acceptable	Ideal
Carbon to Nitrogen Ratio	20:1 - 40:1	25:1 - 30:1
Moisture Content (% by weight)	40 - 65%	50 - 60%
Oxygen Concentration (%Vol)	>5%	5 -15 %
Particle Size (diameter)	3.2 - 12.5 mm	Depends on the material
рН	5.5 – 8.5	6.5 – 7.5
Bulk density (kg/m³)	500 - 800	600
Temperature (inside piles)	45 – 65 C°	55 – 60 C°



Main Factors Controlling Aerobic Composting Process


3. Temperature inside Composting Piles (Heat sterilization)

Heat naturally generated Kills fly eggs, viruses, pathogens and weed seeds

Windrows: 14 days at 55 °C 07 days at 65 °C

Comparison in Physiochemical Properties between our Product and other Market Products in Jordan

Parameter	Samples						
	1	3	4	5	2	6	Reference *
PH	7.98	8.17	8.5	8.14	6.83	8.55	5.5 - 8.0
CEC (meq/L)	50.8	50.2	52.32	52.78	51.24	50.34	> 60
Organic Matter %	60.03	35.93	36.38	29.49	15.81	31.72	30 – 70
Total Nitrogen %	4.33	2.43	2.16	2.17	1.43	1.75	0.2 – 2.0
P - Olsen (ppm)	1429.3	2946.2	2180.7	2021.19	720.51	1319.5	0.2 – 1.0
Available K (ppm)	20180	24580	20680	22280	13580	19980	0.5 – 1.0
C:N	8	9	10	8	6	11	8:1 – 20:1
Moisture %	24.56	41.75	36.44	59.63	57.65	39.01	30 – 50

^{*} Typical values from US EPA 2001 Compost Quality Standards, also from Germany & Austria Quality

Samples	Description	
1	Fresh poultry manure (non treated)	
2	Commercial compost product from Nursery bitmoss	
3	50% poultry + 50% cow (treated)	
4	100 % poultry (treated)	
5	66.5% poultry + 33.5 % cow (treated)	
6	Dir alla factory from compost products	

Conclusions

- Composting as an environmental sound method for organic solid processing is considered the most cost efficient process that produces compost according to the international and national standards.
- The investigation tests showed that the biological degradation in the composting process is rapidly proceeded at suitable conditions of C/N ratio, moisture content, and available oxygen.
- Special attention should be given to the turning frequency which greatly depends on the measured parameters (O_2 , CO_2 , H_2O , and Temperature).
- Chicken and cow manure with possible addition of structural material (sawdust) have been proven to be excellent input materials for composting processes.